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Abstract

This paper presents an optical flow estimation technique
that improves the accuracy of existing methods in the prob-
lematic case of motion discontinuity. An initial flow esti-
mate at a pixel is calculated from selected “reliable” pix-
els in the spatial neighbourhood. This initial estimate is
then used to distinguish smooth and discontinuous regions.
The flow estimate in a smooth region is refined using data
from the temporal neighbourhood. Flow in a discontinu-
ous region is estimated by reasoning about the local mo-
tion boundary, which can result in accurate estimation even
when the optical flow constraint does not hold. By care-
fully structuring this computation, the method runs at the
same speed as existing methods in the literature, while pre-
liminary experiments indicate it can produce more accurate
results near motion boundaries.

1. Introduction

Computing optical flow, the apparent motion of an im-
age’s brightness pattern, is a fundamental problem in com-
puter vision. It provides crucial information for registration,
tracking, stereo matching and many other motion related
tasks. Differential techniques, which exploit the spatial and
temporal variation of image intensity, have been intensely
investigated for optical flow computation.

The common starting point of differential techniques is
the Optical Flow Constraint (OFC), which assumes that the
brightness of the moving objects remains constant. This
constraint alone is not sufficient to recover a 2-dimensional
velocity vector for each pixel. Therefore, the main concern
of differential techniques is to integrate other appropriate
constraints. The pioneering methods to solve the problem
are Lucas-Kanade’s constant flow [8] and Horn-Schunck’s
variation minimization [7], which both assume smoothness

of the flow field.

In [7] by Horn-Schunck, it is suggested that each veloc-
ity component’s gradient should have an l2 norm near to
zero. The trade-off between this smoothness constraint and
the OFC is modeled into an energy minimization frame-
work. By calculus of variation, the associated Euler-
Lagrange equation pair implies that each velocity compo-
nent should satisfy the OFC and Laplace’s equation, bal-
anced by a Lagrange multiplier. Gauss-Seidel iteration con-
verges to the solution. This global method generates a dense
flow field. However, it suffers from an oversmoothing ef-
fect at the motion boundary. To overcome this problem,
many anisotropic smoothness constraints have been pro-
posed to replace Horn-Schunck’s isotropic one. The asso-
ciated anisotropy terms are generally intensity based (linear
term, e.g., [10] by Nagel) or flow based (non-linear term,
e.g., [3], [16]). Such constraints prohibit smoothing over
intensity or motion boundaries. The extension from a spa-
tial smoothness constraint to a spatio-temporal constraint
has also been discussed in [3] and [16], and significant
improvement has been reported. However, this non-linear
spatio-temporal iteration process is computationally expen-
sive.

In contrast to the global iterative scheme, Lucas-
Kanade’s constant flow [8] is local and therefore more ro-
bust to noise. Specifically, this method assumes a piece-
wise constant flow field. Thus the under-determined bright-
ness constraint equations can be composed to form an over-
determined system. As long as the system has rank 2 (i.e.,
the region is not featureless, or all points are fully aligned),
a least squares solution can be found straightforwardly. This
constant flow constraint was then developed into a constant
vector constraint, for example, the vector of flow and its
first-order spatial derivatives in [13] by Shi-Tomasi and
[4] by Campani-Verri. The advantage of using an overcon-
strained system is the robustness of the least squares solu-
tion to noise. However, it is also sensitive to discontinuities
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of depth, intensity, motion and occlusion. For better perfor-
mance, Lucas-Kanade suggested using a weighted overcon-
strained system. However, as the weights are given by the
second order derivatives, and the possible outliers are still
in the system, this only partly alleviates problems caused by
intensity discontinuity. Another problem is the dramatically
increasing size of the system with the increasing dimension
of the constraint vector, to obtain a robust and stable solu-
tion. For example, in Campani-Verri [4], 41× 41 equations
are used for 6 unknowns.

This paper aims at dense, accurate flow computation
with well preserved motion discontinuity. To this end, we
construct a dynamic overconstrained system of equations to
recover the optical flow, deformation and acceleration. An
initial system of equations for flow estimation at each pixel
is built up from selected pixels in its spatial neighborhood.
Pixels are selected by detecting and rejecting outliers based
on image intensity, first and second order spatial variation.
Flow vectors obtained by solving this system are then tested
using the brightness constraint equation. We use the resid-
ual of this equation as an indicator for the selection of tem-
poral neighbors. Next, we use the selected temporal neigh-
bors to refine the vectors obtained in the previous step. In
the final step, we utilize the acceleration vectors to detect re-
gions with possible occlusion or disocclusion. The velocity
vectors in such regions are then corrected using flow from
earlier or later frames, depending on whether occlusion or
disocclusion is detected.

2. Problem Statement and Related Work

We build our system on the optical flow constraint, which
assumes that the brightness E of a spatio-temporal scene
point (x, y, t) remains constant over time. This assumption
means that motion is the sole cause for the intensity change
of a pixel. Mathematically, this constraint is expressed by
the Optical Flow Constraint Equation (OFCE),

dE(x, y, t)
dt

= Exxt + Eyyt + Et = 0. (1)

where, as throughout the paper, the subscripts denote the
corresponding partial derivatives. Eq.(1) links the image
velocity (xt, yt)

T (or optical flow) to the image gradient
(Ex, Ey, Et)

T , modeling optical flow recovery as an in-
verse problem. To estimate the two unknown velocity com-
ponents, at least one other constraint is needed. Lucas-
Kanade’s constant flow method solves the problem by an
overdetermined system,

Ex (p1) Ey (p1)
Ex (p2) Ey (p2)

...
...

Ex (pN2) Ey (pN2)


[

u
v

]
=


−Et (p1)
−Et (p2)

...
−Et (pN2)



where p1, p2, · · · , pN2 are pixels within an N × N win-
dow, and (u, v) is the assumed constant flow of this window.
The least squares solution can be obtained by computing the
generalized inverse of the N2 × 2 matrix.

The work presented here is inspired by this strategy. By
taking partial derivatives at both sides of Eq.(1) along the
spatio-temporal axes, we obtain a linear system of 3 equa-
tions of 8 unknowns, Exx Exy Ex Ey 0 0 0 0

Exy Eyy 0 0 Ex Ey 0 0
Ext Eyt 0 0 0 0 Ex Ey

 ~V

=

 Ext

Eyt

Ett

 . (2)

where ~V = [u, v, ux, uy, vx, vy, ut, vt]
T . The center

four entries of ~V describe the dilation and vorticity of the
moving object, and have been of particular research interest
for time-to-contact and obstacle avoidance (e.g., [5]). The
last two entries of ~V compose the acceleration vector, which
will be used to detect occlusion/disocclusion in our method.

In most circumstances, it is adequate to approximate a
small surface patch by a moving plane. Hence the velocity
can be approximated by a quadratic polynomial in the im-
age coordinates. Therefore, it is reasonable to assume that,
within a small N ×N image region, the vector ~V is nearly
constant. This assumption leads to a 3N2 × 8 overdeter-
mined system of 8 unknowns, which we write as

A~V = b. (3)

The least squares solution of an overdetermined system
is robust to noise, but sensitive to outliers. In optical flow
computation, the outliers are pixels at an object boundary,
a motion boundary, or an occlusion boundary. In these re-
gions, either the brightness or the velocity (or both) is not
constant.

The aim of this paper is to devise a system that avoids
regularizing the irregular pixels. The irregularity is first de-
tected from the image intensity and derivatives, and then the
residual from the optical flow constraint, and finally from
the acceleration.

Overdetermined systems based on the assumption of a
constant vector consisting of flow and its first order spatial
derivatives have been proposed previously in [4, 14, 11].
Although all these works and the one presented here are
based on some overdetermined system that has a similar
form to (3), they are fundamentally different. The additional
constraint of [14] is that d∇E/dt = 0, whereas [4] assumes
affine motion. Neither of these assumptions is employed
here. [11] is a general discussion based on a Taylor expan-
sion of intensity derivatives, investigating optimal combi-
nation schemes of the different-order differential equations
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derived from OFCE. In contrast, our aim is to improve the
estimation of flow at a point by dynamically forming a sys-
tem of equations based only on pixels that are determined
to be consistent with that point.

Although a model of occlusion has previously been in-
corporated into optical flow estimation, for example in [2],
it has not been related to the constant vector constraint.

3. Dense Flow Computation with High Accu-
racy

3.1. Selection of spatial neighbors

Within the scope of this section, we assume that the op-
tical flow constraint holds at the pixel of interest. The case
where this constraint fails will be discussed in Section 3.3.
In the following and throughout the paper, we denote the
pixel of interest by c, the linear size of the surrounding
searching window by N , and any other pixels in the win-
dow by p.

Our first selection criterion is pixel intensity similar-
ity. Significant intensity difference between adjacent pix-
els generally implies object boundaries, and hence the high
likelihood of inconsistent flow fields, if the objects move
independently. Therefore, among all the candidates in the
search region, we select only those with similar intensity
values . Specifically, we base our selection on computing
the intensity difference between c and the candidate pixel
pi, i.e.,di = |E(pi)− E(c)| , i = 1, 2, · · · , N2. We then
sort the set of di, i.e., S =

{
di| i = 1, 2, · · · , N2

}
, into set

S̃ =
{

d̃j

∣∣∣ j ∈ [1, N2], d̃j ∈ S, d̃j <= d̃j+1

}
in ascending

order. At most, the first M(< N2) pixels from the ordered
set S̃ will be selected. Furthermore, if Pj0 is the first pixel
such that d̃j0 is larger than a similarity threshold, then fur-
ther pixels corresponding to j ≥ j0 are rejected. In our
experiments on RGB sequences with 8 bit intensity levels
for each channel, the intensity difference is computed as the
sum of the absolute difference of the three channels. The
similarity threshold T = 96, which means that the average
absolute difference of the three channels should not exceed
1/8 of the 256 intensity levels.

From the pixels selected in the previous step, we con-
tinue to detect and reject outliers with inconsistent gradi-
ents. The spatio-temporal gradient (Ex, Ey, Et) is the di-
rection of maximum intensity variation. If the image win-
dow corresponds to a small surface patch with smooth vari-
ation, pixels within the window are expected to have similar
intensity gradient vectors. Thus inconsistent gradient vec-
tors generally indicate regions containing an object bound-
ary or depth discontinuity. Therefore in this step we reject
pixel p if

{
sign(Ex/Et)(p) = −sign(Ex/Et)(c)
sign(Ey/Et)(p) = −sign(Ey/Et)(c)

or {
sign(Ext/Ett)(p) = −sign(Ext/Ett)(c)
sign(Eyt/Ett)(p) = −sign(Eyt/Ett)(c).

The last step in spatial neighbor selection is to reject
outliers caused by occlusion and disocclusion. Here, by
disocclusion, we mean regions that have been occluded
and then reappear in the sequence. If a pixel is to be oc-
cluded/disoccluded, the constant brightness assumption is
invalid. As a consequence, the differential constraint equa-
tions derived from it will skew system (3). We reject such
outliers based on the observation that the temporal deriva-
tives of these tend to have large magnitude compared to
their spatial derivatives. Therefore, if a pixel p meets any
of the following inequalities, it is rejected:

|Et|
|Ex|+ |Ey|

> T1,

|Ext|
|Exx|

> T2,

|Eyt|
|Eyy|

> T3,

where the thresholds T1,T2 and T3 are the corresponding
mean values over the whole image.

It is possible that the selection procedure results in a ma-
trix A with rank ≤ 8. In this case, we choose 6 pixels that
have most similar intensity values to form system (3). Now
the initial dense flow field can be obtained from ~V = A+b.
The flow vectors with low fidelity will be refined or cor-
rected in the following sections.

3.2. Selection of temporal neighbors

In general, the perceived object velocity is closely cor-
related between successive frames. Therefore, the spa-
tial smoothness constraint can be extended to a spatial-
temporal one. On one hand, integrating temporal neigh-
bors into system (3) improves the robustness of the recov-
ery to noise and time aliasing. On the other hand, this ex-
tension oversmoothes motion boundaries if the region con-
tains independently moving objects. Therefore the exten-
sion from spatial constraint to spatio-temporal constraint
must be implemented with care. Weickert-Schnorr’s to-
tal variation method uses anisotropy terms to steer the en-
ergy minimization formulation, by assigning higher weights
to spatio-temporal neighbors of similar intensity or motion
pattern. They report a significant improvement in average
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angular error due to this extension. So far in the literature,
the spatio-temporal version of Lucas-Kanade’s or similar
approaches is simply to extend the constant flow (and its
derivatives) constraint to a spatio-temporal N × N × N
neighborhood.

In this section, we propose selecting the coherent tempo-
ral neighbors based on the vector obtained in Section 3.1.
To do so, we employ the residual error given by

r = |Exu + Eyv + Et| . (4)

This residual generally measures the fidelity of the flow ob-
tained in the previous step. Ideally, if the recovered flow is
the ground truth, r is expected to have a small value, except
when OFCE itself is invalid, which will be discussed later.
In particular, small r means that the constraints in previous
sections are appropriate, and it is then safe to apply them to
temporal neighbor selection. By contrast large r implies the
presence of discontinuity factors in the neighborhood. Thus
we only extend the constant vector constraint to temporal
neighbors if r is smaller than a threshold.

The selected temporal neighbors form a new system

R~V = d,

which is combined with the previous system (3) to form

W ~V =
[

A
R

]
~V =

[
b
d

]
. (5)

Directly computing W+ = (WT W )−1WT for the least
squares solution of (5) is computationally inefficient. In-
stead, we compute W+ from R and A+, which we have
obtained from previous steps, by the following scheme,

Q =
(
RA+

)T ;

B1 = (I + QQT )−1(A+)T ;

B2 = QT B1;

W+ = [B1|B2].

The interested reader is referred to [12] for the mathemati-
cal proof that [B1|B2] is the generalized inverse of W .

3.3. Correction of Erroneous Flow

The formulation in previous sections is based on the
validity of the constant brightness constraint. How-
ever, when the scene contains intensity discontinuity
or occlusion/disocclusion, the image brightness is non-
differentiable, and hence even the true flow may not sat-
isfy the OFCE. If the invalidity of the constraint is caused
by fast intensity variation, system (5) can still estimate the
flow accurately, given the motion is smooth in a sufficiently

large region. This is because system (5) treats sporadic fast
variation as noise, and the main contribution to the system
is from the differentiable neighbors. The problem is more
complicated if the validity is due to occlusion/disocclusion
or motion discontinuity, because most pixels in the system
have inconsistent motion patterns.

Such regions can be detected from the computed acceler-
ation components ut and vt, which tend to have large mag-
nitude if system (5) contains pixels with inconsistent mo-
tion. We observe that |ut| + |vt| is an efficient detector for
pixels with erroneously computed flow. This measure has
low computational cost and signals disoccluded/occluded
regions well. Once such pixels are detected, the velocity
vectors in the surrounding regions (i.e. the search window)
are examined for occlusion/disocclussion. More specifi-
cally, we divide the window into four regions: the left half
Ωl, the right half Ωr, the upper half Λu and the lower half
Λl. The average velocity components are calculated in these
rectangular sub-regions by

vl
0 = mean(v(p)), p ∈ Ωl;

vr
0 = mean(v(p)), p ∈ Ωr;

ul
0 = mean(u(p)), p ∈ Λl;

uu
0 = mean(u(p)), p ∈ Λu;

Here, without loss of generality, we assume v is the veloc-
ity’s horizontal component, and u the vertical component.
The signed magnitude and convergence/divergence of these
average velocity components are used to judge the occur-
rence of occlusion/disocclusion. For example, convergence
of vectors (0, vl

0) and (0, vr
0) indicates that regions Ωl and

Ωr are tending to merge, and therefore that the size of the
occluding region is increasing over time. Divergence of the
two vectors indicates that the two regions are moving apart,
and hence disocclusion, or decrease of the occluding region,
is inferred. If (0, vl

0) and (0, vr
0) point to the same direction,

for example to the left, then faster/slower vr
0 indicates oc-

clusion/disocclusion, compared to vl
0. A similar argument

holds for the velocity component u.
Regions with occlusion and disocclusion are treated dif-

ferently. To correct the obtained flow in a region of increas-
ing occlusion, we resort to the preceding frames to form a
new system (5). Conversely, for the disocclusion region,
subsequent frames are used since they are less likely to in-
clude the motion boundary.

4. Experimental Results

In this section, we present our experiments conducted
on a color sequence Street and an 8-bit grayscale sequence
Hamburg Taxi. Sequence Street was created to evalu-
ate optical flow techniques in [9] by McCane-Novin-
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Crannitch-Galvin and [6] by Galvin et al. The se-
quence and the ground-truth flow are publicly available at
www.otago.ac.nz/research/vision. Figure 1 shows its 10th
frame and Figure 2 is the zoomed-in view of the true flow
around the car region, subsampled by a factor of 2. This se-
quence depicts a street scene with a car moving to the right
and the camera moving to the left. Sequence Street is chal-
lenging for optical flow recovery, as it contains a variety of
factors that violate the optical flow constraint. These fac-
tors include shadows, transparency, intensity discontinuity,
depth discontinuity, different motion patterns, and occlu-
sion/disocclusion.

In our experiment, the sequence is pre-smoothed by a
Gaussian kernel along all three dimensions before calculat-
ing the derivatives. The standard deviation of the smoothing
kernel is 0.8 pixel, and the kernel length is 7 pixels. The first
order derivative is approximated by the 3-point central dif-
ferencing filter 1

2 [−1 0 1]. The second order derivatives are
obtained by cascading the first-order derivatives. The size
of the searching window is 19× 19 pixels, with at most 225
pixels selected from each window for the overdetermined
system in the first step. The second step of the selection
process is conducted on the two adjacent frames. If occlu-
sion/disocclusion is detected, the flow is corrected using the
preceding/subsequent second and third adjacent frames.

Figure 3 demonstrates the flow recovered by our method,
zoomed-in and subsampled by a factor of 2. This figure
shows that the motion boundary is well preserved. To quan-
titatively evaluate the accuracy of our method, we mea-
sure the recovered flow by the average and standard devi-
ation of the angular error, as suggested by Barron-Fleet-
Beauchemin in [1] . These quantitative measurements are
widely used in the current literature of optical flow compu-
tation. The angular error is defined by

arccos

(
ucue + vcve + 1√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)

)
,

where (uc, vc, 1) is the true velocity vector, and (ue, ve, 1)
is the estimated one.

We compare our methods to three existing differential
techniques in the literature: Lucas-Kanda [8], Uras-Girosi-
Verri-Torre [15] and Weickert-Schnörr [16]. Methods of
Lucas-Kanade and Uras et. al are reported as two of the best
differential techniques in [1] by Barron-Fleet-Beauchemin
(1994); and Weickert-Schnörr’s method has achieved the
best performance on Street in the literature by far. All meth-
ods are compared over full density flow field. Our experi-
mental settings of the first two are as same as the ones em-
ployed in [1]. Table 1 lists the average angular error and
standard deviation achieved by each method. The numerical
comparison shows that the proposed method outperforms
existing techniques, and the associated flow field (Figure 3,

with ground truth in Figure 2) shows a particular improve-
ment in areas near occlusion boundaries.

The algorithm is also tested on the real image sequence
Hamburg Taxi, as in [1] and [16]. Figure 4 shows a sample
frame of the sequence. The scene contains four moving ob-
jects: a turning taxi, a car, a van and a pedestrian. Challeng-
ing factors of this sequence include its low resolution and
occlusion. For example, the tree in the lower right occludes
parts of the van, when the van is moving from left to right.
In our experiment on this sequence, no pre-smoothing is im-
plemented, as suggested in [16]. The other settings are the
same as those of the experiment on sequence Street. Figure
5.a and Figure 6.a are the computed flow fields around the
car and the van respectively, before occlusion/disocclusion
detection and flow correction. Figure 5.b and Figure 6.b
present the finally computed flow fields, which show the
improved performance at motion-boundaries. Note that the
tree trunk in the lower right of Figure 6, which is still and
occludes the van, is successfully partitioned from the mov-
ing van. Also note that the moving shadow in front of the
car in Figure 5 is detected more accurately as not moving
after occlusion/disocclusion detection.

Average Standard
Error Deviation

Uras et al. 13.27 19.68
Lucas-Kanade 8.47 13.03

Weickert-Schnörr 4.85 unspecified
The proposed method 3.95 9.77

Table 1. Comparison with existing differential
techniques of optical flow computation

5. Conclusion

This paper has demonstrated that the accuracy of dense
optical flow estimation can be improved by selective use of
pixels in a point’s spatial and temporal neighbourhood. In
particular, the estimation of flow at occlusion boundaries is
enhanced by distinguishing between points that have been
occluded in the recent past and those that will be occluded in
the near future. The computational cost of including these
extra checks is minimal.
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